ENS022 Introduction to Digital Manufacturing TechniquesIstinye UniversityDegree Programs Mathematics (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Mathematics (English)

Preview

Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code: ENS022
Course Name: Introduction to Digital Manufacturing Techniques
Semester: Spring
Fall
Course Credits:
ECTS
5
Language of instruction: English
Course Condition:
Does the Course Require Work Experience?: No
Type of course: Departmental Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: E-Learning
Course Coordinator: Doç. Dr. SALİHA KARADAYI USTA
Course Lecturer(s): Saliha Karadayı Usta
Course Assistants:

Course Objective and Content

Course Objectives: This course aims to teach the fundamental digital manufacturing activities and technological background in an overall perspective.
Course Content: Introduction to integrated manufacturing systems, Computer integrated manufacturing (CIM) systems, When to apply CIM, Industrial robots, Automated Guided Vehicles (AGVs), Computer aided design (CAD), CNC Programming, Economic comparison between flexible and traditional manufacturing systems, Conveyor Systems, Storage, A theoretical and practical course which familiarizes students with the concept of digital manufacturing, Industry 4.0 technologies and digital transformation fundamentals.

Learning Outcomes

The students who have succeeded in this course;
1) Able to analyze, design and interpret digital manufacturing systems including human, machine, material and equipment, information, and energy.
2) Able to analyze the manufacturing environments via digital production basics.
3) Able to take charge and lead in multidisciplinary teams in engineering and business fields.

Course Flow Plan

Week Subject Related Preparation
1) Introduction to Computer Integrated Manufacturing (CIM) systems, When to apply CIM Bedworth, D.D., Henderson, M.R., Wolfe, P.M., Computer-Integrated Design and Manufacturing, McGraw-Hill, 1991. GROOVER, M.P., Automation, Production Systems and CIM, Prentice-HALL, 1987.
2) Industrial robots Bedworth, D.D., Henderson, M.R., Wolfe, P.M., Computer-Integrated Design and Manufacturing, McGraw-Hill, 1991. GROOVER, M.P., Automation, Production Systems and CIM, Prentice-HALL, 1987.
3) Automated Guided Vehicles (AGVs) Bedworth, D.D., Henderson, M.R., Wolfe, P.M., Computer-Integrated Design and Manufacturing, McGraw-Hill, 1991. GROOVER, M.P., Automation, Production Systems and CIM, Prentice-HALL, 1987.
4) Computer aided design (CAD) Bedworth, D.D., Henderson, M.R., Wolfe, P.M., Computer-Integrated Design and Manufacturing, McGraw-Hill, 1991. GROOVER, M.P., Automation, Production Systems and CIM, Prentice-HALL, 1987.
5) CNC Programming, Economic comparison between flexible and traditional manufacturing systems Bedworth, D.D., Henderson, M.R., Wolfe, P.M., Computer-Integrated Design and Manufacturing, McGraw-Hill, 1991. GROOVER, M.P., Automation, Production Systems and CIM, Prentice-HALL, 1987.
6) Conveyor Systems, Storage Bedworth, D.D., Henderson, M.R., Wolfe, P.M., Computer-Integrated Design and Manufacturing, McGraw-Hill, 1991. GROOVER, M.P., Automation, Production Systems and CIM, Prentice-HALL, 1987.
7) Introduction to Digital Manufacturing (DM), Transformation in manufacturing, Consumer Driven Change in Manufacturing Bedworth, D.D., Henderson, M.R., Wolfe, P.M., Computer-Integrated Design and Manufacturing, McGraw-Hill, 1991. GROOVER, M.P., Automation, Production Systems and CIM, Prentice-HALL, 1987.
8) Midterm Exam
9) Impact on manufacturing careers, HR in digital manufacturing era, Diversity, equity and inclusion in DM, Organizational Challenges in Digital Transformation, Digital Capabilities as Lifesavers, Advantages of DM, Information sharing in the digital thread, Data procurement and standards Ozel, T., & Davim, J. P. (Eds.). (2009). Intelligent Machining: Modeling and Optimization of the Machining Processes and Systems. London, England: Wiley-Iste.
10) The industrial internet of things (IIoT), Sensor technology, Economics of sensor technology, Common business cases for sensors, Cloud computing and the IIoT ecosystem, IIoT business value proposition, IIoT implementation framework, IIoT challenges and risks, IIoT future trend Ozel, T., & Davim, J. P. (Eds.). (2009). Intelligent Machining: Modeling and Optimization of the Machining Processes and Systems. London, England: Wiley-Iste.
11) Digital Twins (DT) in manufacturing, Complexity and scale of DT, DT and the automotive industry, DT platform ecosystem, DT concept, Business advantages, DT implementation, Challenges and risks, Future look, Digital thread Manpower Group. (2016). In Manpower. Retrieved from https://www.manpower.com UI Labs. (2016). The Digital Manufacturing and Design Innovation Institute. In DMDII
12) Additive Manufacturing, General applications of Additive Manufacturing, Technology of Additive Manufacturing and industrial application examples Ozel, T., & Davim, J. P. (Eds.). (2009). Intelligent Machining: Modeling and Optimization of the Machining Processes and Systems. London, England: Wiley-Iste
13) Broad Additive Manufacturing partners, Additive Manufacturing business value proposition, Implementation framework, Challenges and risks, Future trends
14) Broad Additive Manufacturing partners, Additive Manufacturing business value proposition, Implementation framework, Challenges and risks, Future trends

Sources

Course Notes / Textbooks: Bedworth, D.D., Henderson, M.R., Wolfe, P.M., Computer-Integrated Design and Manufacturing, McGraw-Hill, 1991. GROOVER, M.P., Automation, Production Systems and CIM, Prentice-HALL, 1987.
Grieves, M. (2006). Product Lifecycle Management: Driving the Next Generation of Lean Thinking. New York, NY: McGraw Hill.
Ozel, T., & Davim, J. P. (Eds.). (2009). Intelligent Machining: Modeling and Optimization of the Machining Processes and Systems. London, England: Wiley-Iste.
References: RIT.edu. (2015). Quote by Jeff Immelt, Chairman and CEO of General Electric. In Center of Excellence in Sustainable Manufacturing.
National Institute of Standards and Technology homepage. (n.d.). In NIST. Retrieved from https://www.nist.gov/
Manpower Group. (2016). In Manpower. Retrieved from https://www.manpower.com
UI Labs. (2016). The Digital Manufacturing and Design Innovation Institute. In DMDII

Course - Program Learning Outcome Relationship

Course Learning Outcomes

1

2

3

Program Outcomes
1) Have the knowledge of the scope, history, applications, problems, methods of mathematics and knowledge that will be beneficial to humanity as both scientific and intellectual discipline.
2) Have the ability to establish a relationship between mathematics and other disciplines and develop mathematical models for interdisciplinary problems.
3) Have the ability to define, formulate and analyze real life problems with statistical and mathematical techniques.
4) Have the ability to think analytically and use the time effectively in the process of deduction.
5) Have the ability to search the literature, understand and interpret scientific articles.
6) Have the knowledge of basic software to be able to work in the related fields of computer science and have the ability to use information technologies at an advanced level of the European Computer Driving License.
7) Have the ability to work efficiently in interdisciplinary teams.
8) Have the ability to communicate effectively in oral and written form, write effective reports and comprehend the written reports, make effective presentations. 2 2 3
9) Have the consciousness of professional and ethical responsibility and acting ethically; have the knowledge about academic standards.
10) Have the ability to use a foreign language at least at B1 level in terms of European Language Portfolio criteria.
11) Are aware of the necessity of lifelong learning; have the ability to access information, to follow developments in science and technology and to constantly renew themselves.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Average 3 Highest
       
Program Outcomes Level of Contribution
1) Have the knowledge of the scope, history, applications, problems, methods of mathematics and knowledge that will be beneficial to humanity as both scientific and intellectual discipline.
2) Have the ability to establish a relationship between mathematics and other disciplines and develop mathematical models for interdisciplinary problems.
3) Have the ability to define, formulate and analyze real life problems with statistical and mathematical techniques.
4) Have the ability to think analytically and use the time effectively in the process of deduction. 2
5) Have the ability to search the literature, understand and interpret scientific articles.
6) Have the knowledge of basic software to be able to work in the related fields of computer science and have the ability to use information technologies at an advanced level of the European Computer Driving License.
7) Have the ability to work efficiently in interdisciplinary teams.
8) Have the ability to communicate effectively in oral and written form, write effective reports and comprehend the written reports, make effective presentations.
9) Have the consciousness of professional and ethical responsibility and acting ethically; have the knowledge about academic standards.
10) Have the ability to use a foreign language at least at B1 level in terms of European Language Portfolio criteria.
11) Are aware of the necessity of lifelong learning; have the ability to access information, to follow developments in science and technology and to constantly renew themselves.

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Quizzes 5 % 30
Midterms 1 % 30
Final 1 % 40
total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
total % 100

Workload and ECTS Credit Calculation

Activities Number of Activities Preparation for the Activity Spent for the Activity Itself Completing the Activity Requirements Workload
Course Hours 13 2 2 52
Study Hours Out of Class 13 1 13
Quizzes 5 2 10
Midterms 1 20 20
Final 1 20 20
Total Workload 115