UNI327 Data Analysis with RIstinye UniversityDegree Programs Electonics TechnologyGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Electonics Technology

Preview

Associate TR-NQF-HE: Level 5 QF-EHEA: Short Cycle EQF-LLL: Level 5

Course Introduction and Application Information

Course Code: UNI327
Course Name: Data Analysis with R
Semester: Fall
Course Credits:
ECTS
5
Language of instruction: Turkish
Course Condition:
Does the Course Require Work Experience?: No
Type of course: University Elective
Course Level:
Associate TR-NQF-HE:5. Master`s Degree QF-EHEA:Short Cycle EQF-LLL:5. Master`s Degree
Mode of Delivery: E-Learning
Course Coordinator: Öğr. Gör. AYŞEGÜL ÇALIŞKAN İŞCAN
Course Lecturer(s): Dr. Ayşegül Çalışkan İşcan
Course Assistants:

Course Objective and Content

Course Objectives: This course aims to teach the R programming language at a basic level.
Course Content: This course includes basic elements of R programming languages.

Learning Outcomes

The students who have succeeded in this course;
1) Have knowledge about R programming language
2) Learns R programming language at a basic level.
3) Can analyze any data by using R language.
4) Can understand and manipulate any R code.
5) Can make statistical analysis by using R language.

Course Flow Plan

Week Subject Related Preparation
1) Course overview
2) R Arithmetic, Atomic Data Types
3) Variables, Vectors
4) Matrices
5) Lists, Data Frames
6) Factors, Reading and Writing Data
7) Exercises, Lesson Repetition
8) Mid-term Week
9) Control flow, functions
10) Exploring and Preparing Data
11) Working with text data
12) Preparing Numeric Data, Dealing with Dates
13) Merging data, Frequency tables
14) Plotting in Base R, plotting with ggplot2

Sources

Course Notes / Textbooks: 1. Mark Gardener - Beginning R_ The Statistical Programming Language-Wrox
2. Tony Fischetti - Data Analysis with R_ Load, wrangle, and analyze your data using the world's most powerful statistical programming language-Packt Publishing (2015)
References: 1. Mark Gardener - Beginning R_ The Statistical Programming Language-Wrox
2. Tony Fischetti - Data Analysis with R_ Load, wrangle, and analyze your data using the world's most powerful statistical programming language-Packt Publishing (2015)

Course - Program Learning Outcome Relationship

Course Learning Outcomes

1

2

3

4

5

Program Outcomes
1) To have sufficient knowledge and experience in applying mathematics and science in the field of Electronic Technology.
2) To have knowledge about occupational safety and its applications and to have the competence to carry out its applications.
3) To have the ability to communicate effectively verbally and in written Turkish.
4) Having basic knowledge of English language and the ability to use it in the professional field.
5) To be conscious of Ataturk's Principles and to have knowledge about the History of the Revolution.
6) Able to transfer relevant designs and applications in the field of electronics to colleagues, superiors and the people and groups they serve, and to work in teams.
7) Awareness of the necessity of lifelong learning; To monitor the developments in science and technology and to constantly renew itself.
8) To be able to use computer-aided electronic design programs at a basic level for simulation and printed circuit creation.
9) To be able to make decisions in independent work, to take initiative and adapt in teamwork with people inside and outside the profession.
10) To use the software and hardware required by the profession, along with basic computer usage knowledge.
11) To effectively use the devices in electronics laboratories, collect data through measurement and diagnose faults.
12) To identify problems related to unforeseen situations in electronics-related studies and to produce solutions to the problems
13) To have knowledge and awareness of social responsibility, ethical values and social security rights on electronics-related issues.
14) To be able to produce solutions using basic knowledge about the design and control of control-based functions in electronic circuits and systems.
15) To objectively evaluate and supervise the performance of employees under his/her responsibility.
16) To know the concepts related to electronics, to recognize electronic circuit elements and to use them in related circuits.
17) To recognize the physical strength limits of electronic circuit components and to gain the ability to determine operating conditions accordingly.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Average 3 Highest
       
Program Outcomes Level of Contribution
1) To have sufficient knowledge and experience in applying mathematics and science in the field of Electronic Technology. 1
2) To have knowledge about occupational safety and its applications and to have the competence to carry out its applications. 3
3) To have the ability to communicate effectively verbally and in written Turkish. 3
4) Having basic knowledge of English language and the ability to use it in the professional field. 3
5) To be conscious of Ataturk's Principles and to have knowledge about the History of the Revolution.
6) Able to transfer relevant designs and applications in the field of electronics to colleagues, superiors and the people and groups they serve, and to work in teams.
7) Awareness of the necessity of lifelong learning; To monitor the developments in science and technology and to constantly renew itself. 3
8) To be able to use computer-aided electronic design programs at a basic level for simulation and printed circuit creation.
9) To be able to make decisions in independent work, to take initiative and adapt in teamwork with people inside and outside the profession.
10) To use the software and hardware required by the profession, along with basic computer usage knowledge. 3
11) To effectively use the devices in electronics laboratories, collect data through measurement and diagnose faults.
12) To identify problems related to unforeseen situations in electronics-related studies and to produce solutions to the problems
13) To have knowledge and awareness of social responsibility, ethical values and social security rights on electronics-related issues.
14) To be able to produce solutions using basic knowledge about the design and control of control-based functions in electronic circuits and systems.
15) To objectively evaluate and supervise the performance of employees under his/her responsibility. 3
16) To know the concepts related to electronics, to recognize electronic circuit elements and to use them in related circuits. 2
17) To recognize the physical strength limits of electronic circuit components and to gain the ability to determine operating conditions accordingly. 2

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Application 13 % 20
Midterms 1 % 30
Final 1 % 50
total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
total % 100

Workload and ECTS Credit Calculation

Activities Number of Activities Workload
Course Hours 15 45
Study Hours Out of Class 16 16
Project 1 8
Midterms 1 1
Total Workload 70