Electrical and Electronic Engineering (English) | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code: | EEE202 | ||||
Course Name: | Signals and Systems | ||||
Semester: | Spring | ||||
Course Credits: |
|
||||
Language of instruction: | English | ||||
Course Condition: | |||||
Does the Course Require Work Experience?: | No | ||||
Type of course: | Compulsory Courses | ||||
Course Level: |
|
||||
Mode of Delivery: | Face to face | ||||
Course Coordinator: | Prof. Dr. INDRIT MYDERRİZİ | ||||
Course Lecturer(s): | BASHAR AFIF ISSA | ||||
Course Assistants: |
Course Objectives: | The goal of this course is to provide the necessary mathematical knowledge to perform basic analyses of signals and systems |
Course Content: | Continuous and Discrete Time Signals and their Properties, Continuous and Discrete Time Systems and their Properties, Linear Time-Invariant Systems, Convolution in Continuous and Discrete Time Systems, Difference Equations, Fourier Analysis of Continuous and Discrete Time Signals, Fourier Series Expansion, Fourier Transform, Laplace Transform, z-Transform |
The students who have succeeded in this course;
1) Acquires the necessary mathematical knowledge to analyze signals and systems 2) Gains the ability to determine the fundamental properties of signals and systems. 3) Obtains the knowledge to perform mathematical transformations on signals. 4) Attains the ability to calculate the output of a linear system. 5) Develops the skills to perform analysis of a system. |
Week | Subject | Related Preparation |
1) | Continuous and Discrete Time Signals | Course Book |
2) | Continuous and Discrete Time Signals Properties | Course Book |
3) | Continuous and Discrete Time Systems Properties | Course Book |
4) | Continuous and Discrete Time Systems Properties | Course Book |
5) | Linear Time invariant Systems, Convolution | Course Book |
6) | Fourier Transform | Course Book |
7) | Fourier Transform | Course Book |
8) | Midterm | Course Book |
9) | Laplace Transform | Course Book |
10) | Laplace Transform | Course Book |
11) | Discrete-time Fourier transform | Course Book |
12) | Discrete-time Fourier transform | Course Book |
13) | z-Transform | Course book |
14) | z-Transform | Course Book |
Course Notes / Textbooks: | A.V. Oppenheim, A.S. Willsky, “Signals and Systems”, Prentice Hall |
References: | R.A. Gabel, R.A. Roberts, “Signals and Linear Systems”, John Wiley & Sons. |
Course Learning Outcomes | 1 |
2 |
3 |
4 |
5 |
||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Program Outcomes | |||||||||||
1) Adequate knowledge in mathematics, science and Electrical and Electronics engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems. | 2 | 2 | |||||||||
2) Ability to identify, formulate, and solve complex electrical and electronics engineering problems; ability to select and apply appropriate analysis and modeling methods for this purpose. | 2 | 2 | |||||||||
3) Ability to design a complex circuit, device or system to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose. | 2 | 2 | |||||||||
4) Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in electrical and electronics engineering applications; ability to use information technologies effectively. | 2 | 2 | |||||||||
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or electrical and electronics engineering research topics. | |||||||||||
6) Ability to work effectively within and multidisciplinary teams; individual study skills. | |||||||||||
7) Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; ability to write effectice reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions. | |||||||||||
8) Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously. | |||||||||||
9) To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in electrical and electronics engineering applications. | |||||||||||
10) Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development. | 2 | 2 | |||||||||
11) Knowledge of the effects of electrical and electronics engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in electrical and electronics engineering; awareness of the legal consequences of electrical and electronics engineering solutions. |
No Effect | 1 Lowest | 2 Average | 3 Highest |
Program Outcomes | Level of Contribution | |
1) | Adequate knowledge in mathematics, science and Electrical and Electronics engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems. | 2 |
2) | Ability to identify, formulate, and solve complex electrical and electronics engineering problems; ability to select and apply appropriate analysis and modeling methods for this purpose. | 2 |
3) | Ability to design a complex circuit, device or system to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose. | 2 |
4) | Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in electrical and electronics engineering applications; ability to use information technologies effectively. | 2 |
5) | Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or electrical and electronics engineering research topics. | |
6) | Ability to work effectively within and multidisciplinary teams; individual study skills. | |
7) | Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; ability to write effectice reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions. | |
8) | Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously. | |
9) | To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in electrical and electronics engineering applications. | |
10) | Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development. | 1 |
11) | Knowledge of the effects of electrical and electronics engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in electrical and electronics engineering; awareness of the legal consequences of electrical and electronics engineering solutions. |
Semester Requirements | Number of Activities | Level of Contribution |
Project | 1 | % 30 |
Midterms | 1 | % 30 |
Final | 1 | % 40 |
total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 60 | |
PERCENTAGE OF FINAL WORK | % 40 | |
total | % 100 |
Activities | Number of Activities | Preparation for the Activity | Spent for the Activity Itself | Completing the Activity Requirements | Workload | ||
Course Hours | 13 | 3 | 39 | ||||
Study Hours Out of Class | 13 | 3 | 39 | ||||
Project | 1 | 20 | 20 | ||||
Midterms | 1 | 20 | 20 | ||||
Final | 1 | 20 | 20 | ||||
Total Workload | 138 |