UNI261 Regenerative Biology and Medicine ApplicationsIstinye UniversityDegree Programs Computer EngineeringGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Computer Engineering

Preview

Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code: UNI261
Course Name: Regenerative Biology and Medicine Applications
Semester: Spring
Course Credits:
ECTS
5
Language of instruction: Turkish
Course Condition:
Does the Course Require Work Experience?: No
Type of course: University Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: E-Learning
Course Coordinator: Dr. Öğr. Üy. ASLI PINAR ZORBA YILDIZ
Course Lecturer(s): Aslı Pınar Zorba Yıldız
Course Assistants:

Course Objective and Content

Course Objectives: The aim of this course is to learn about regenerative biology, evaluation of tissues, wounds or immune processes such as antibody-vaccine that cannot be performed using today's technology, current treatment approaches, biomaterials used and 3D bioprinter systems, and learning the age-appropriate information and ways to reach information suitable for 21st century skills.
Course Content: The content of this course includes current uses of regenerative biology in various treatments with today's technology and how it will be carried forward with new generation technologies in the future, various legal regulations and good laboratory practices.

Learning Outcomes

The students who have succeeded in this course;
1) Explains the concept of regenerative biology and compares it with examples in nature.
2) Classifies treatment methods that fall into the field of regenerative medicine.
3) Compares stem cell and somatic cell systems and their application areas.
4) Explain the basic principles of tissue engineering, biomaterials and application areas.
5) Explains transplantation processes, stem cell vaccines and immune response.
6) Explains artificial tissue engineering application areas and processes according to systems.
7) Explains and classifies nanotechnological approaches and cloning.
8) Explains working principles and legal regulations under GMP conditions.

Course Flow Plan

Week Subject Related Preparation
1) History, Medical Purpose and Importance of Regenerative Biology
2) Cloning Technology: Therapeutic and Reproductive Cloning
3) Somatic Cell Culture Basic Principles and Applications
4) Stem Cell Systems, Types and Application Areas
5) Exosome Technology and Applications
6) Antibody Engineering and Stem Cell Vaccines
7) Midterm
8) Basic Tissue Engineering, Cell and Tissue Transplantation and Immunity
9) Biomaterials Used in Regenerative Medicine and Their Properties
10) Artificial Tissue Engineering with 3-D Printers
11) Musculoskeletal System, Diabetes and Islet Regenerative Medicine Applications
12) Central and Peripheral Nervous System Regenerative Medicine Applications
13) Nanobiotechnology Introduction, Nanorobotic Systems and Pharmaceutical Applications
14) GMP (Good Manufacturing Practice) Technology, Working Areas, Legal Regulations
15) Final
16) Final

Sources

Course Notes / Textbooks: • Alp Can, Kök Hücre, Akademisyen Kitapevi
• Prof. Dr. Adil M. Allahverdiyev , Somatik ve Kök Hücre Kültür Sistemlerinin Temel İlkeleri, Nobel Tıp Kitapevleri
• Michael A. Palladino, William J. Thieman, Biyoteknolojiye Giriş, Palme Yayıncılık
• Steven R. Goodman , Goodman's Medical Cell Biology, 4th Edition, Elsevier
References: • Alp Can, Kök Hücre, Akademisyen Kitapevi
• Prof. Dr. Adil M. Allahverdiyev , Somatik ve Kök Hücre Kültür Sistemlerinin Temel İlkeleri, Nobel Tıp Kitapevleri
• Michael A. Palladino, William J. Thieman, Biyoteknolojiye Giriş, Palme Yayıncılık
• Steven R. Goodman , Goodman's Medical Cell Biology, 4th Edition, Elsevier

Course - Program Learning Outcome Relationship

Course Learning Outcomes

1

2

3

4

5

6

7

8

Program Outcomes
1) Adequate knowledge in mathematics, science, and computer engineering principles, both theoretical and practical, and the ability to apply this knowledge to complex engineering problems
2) To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in engineering applications.
3) Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development.
4) Knowledge of the effects of computer engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in computer engineering; awareness of the legal consequences of computer engineering solutions.
5) Ability to identify, formulate, and solve complex computer engineering problems using appropriate analysis and modeling techniques.
6) Ability to design and develop complex computer systems, devices, or products that meet specific requirements and operate under realistic constraints and conditions, using modern design methods.
7) Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously.
9) Ability to develop, select and use modern techniques and tools used for the analysis and solution of complex computer engineering problems, and the ability to use information technologies effectively.
10) Ability to plan and conduct experiments, collect and analyze data, and interpret results in the study of complex computer engineering problems or research topics.
11) Ability to work effectively within and multidisciplinary teams; individual study skills.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Average 3 Highest
       
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science, and computer engineering principles, both theoretical and practical, and the ability to apply this knowledge to complex engineering problems
2) To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in engineering applications.
3) Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development.
4) Knowledge of the effects of computer engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in computer engineering; awareness of the legal consequences of computer engineering solutions.
5) Ability to identify, formulate, and solve complex computer engineering problems using appropriate analysis and modeling techniques.
6) Ability to design and develop complex computer systems, devices, or products that meet specific requirements and operate under realistic constraints and conditions, using modern design methods.
7) Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously.
9) Ability to develop, select and use modern techniques and tools used for the analysis and solution of complex computer engineering problems, and the ability to use information technologies effectively.
10) Ability to plan and conduct experiments, collect and analyze data, and interpret results in the study of complex computer engineering problems or research topics.
11) Ability to work effectively within and multidisciplinary teams; individual study skills.

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 1 % 5
Presentation 1 % 5
Project 1 % 20
Midterms 1 % 20
Final 1 % 50
total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
total % 100

Workload and ECTS Credit Calculation

Activities Number of Activities Preparation for the Activity Spent for the Activity Itself Completing the Activity Requirements Workload
Course Hours 2 14 28
Presentations / Seminar 1 20 20
Project 1 20 20
Homework Assignments 2 10 20
Midterms 1 10 10
Final 1 16 16
Total Workload 114