UNI245 Economics of Technology & InnovationIstinye UniversityDegree Programs Chemistry (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Chemistry (English)

Preview

Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code: UNI245
Course Name: Economics of Technology & Innovation
Semester: Fall
Course Credits:
ECTS
5
Language of instruction: English
Course Condition:
Does the Course Require Work Experience?: No
Type of course: University Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator: Doç. Dr. AYFER USTABAŞ
Course Lecturer(s): Doç. Dr. AYFER USTABAŞ
Course Assistants:

Course Objective and Content

Course Objectives: The aim of the course is to provide students with a general comprehension about the crucial impacts of technical and technological progresses on economic development.
Course Content: Innovations and inventions in the waves of technical change, Schumpeter’s theories on technical and technological changes, contemporary theories of innovation in relation to firm behaviour.

Learning Outcomes

The students who have succeeded in this course;
1) Comprehend the crucial impacts of technical and technological progresses on economic development.
2) Have a comprehensive knowledge of Schumpeter's theories.
3) Learn the difference between inveentions and inovations.
4) Learn the modern theories on the economics of technology.

Course Flow Plan

Week Subject Related Preparation
1) Schumpeter’s Theories
2) Schumpeter’s Theories
3) Theories of Entrepreneurship
4) Theories of Entrepreneurship
5) The Rise of Technology, Industrial Revolution
6) The Age of Electricity, Innovations in Oil and Chemicals-Synthetic Materials
7) Mass Production and Automobile
8) MIDTERM
9) Electronics and Computers
10) Success and Failure in Industrial Innovation
11) Innovation and Firm Strategies
12) National Systems of Innovation
13) Technology and Economic Growth
14) International Trade Performance, Diffusion of Technology

Sources

Course Notes / Textbooks: The Economics of Industrial Revolution, Chris Freeman and Luc Soete 3rd Ed. Cassel, London, 1997
References: Yenilik İktisadı, Chris Freeman and Luc Soete, Trans. Ergün Türkcan, Tübitak, Ankara, 2003

Course - Program Learning Outcome Relationship

Course Learning Outcomes

1

2

3

4

Program Outcomes
1) Knows the basic concepts related to the theory and applications of chemistry, uses theoretical and applied knowledge, can select, develop and design methods.
2) Makes experimental planning and application for analysis, synthesis, separation and purification methods, provide solutions to the problems encountered and interpret the results.
3) Expresses the basic principles of sample preparation techniques and instrumental analysis methods used in qualitative and quantitative analysis of items, discusses their application areas.
4) Has knowledge about the sources, production, industrial applications and technologies of chemical substances.
5) Makes structural analyzes of chemical substances and interprets the results.
6) Work individually and in multidisciplinary groups, take responsibility, plan their tasks and use time effectively.
7) Follows the information in the field and communicates with colleagues by using English at a professional level.
8) Uses information and communication technologies along with computer software at the level required by the field.
9) Follows the national and international chemistry literature, transfers the knowledge gained orally or in writing.
10) Determines self-learning needs, manages/directs his/her learning.
11) Takes responsibility and adheres to the ethical values required by these responsibilities.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Average 3 Highest
       
Program Outcomes Level of Contribution
1) Knows the basic concepts related to the theory and applications of chemistry, uses theoretical and applied knowledge, can select, develop and design methods.
2) Makes experimental planning and application for analysis, synthesis, separation and purification methods, provide solutions to the problems encountered and interpret the results.
3) Expresses the basic principles of sample preparation techniques and instrumental analysis methods used in qualitative and quantitative analysis of items, discusses their application areas.
4) Has knowledge about the sources, production, industrial applications and technologies of chemical substances.
5) Makes structural analyzes of chemical substances and interprets the results.
6) Work individually and in multidisciplinary groups, take responsibility, plan their tasks and use time effectively.
7) Follows the information in the field and communicates with colleagues by using English at a professional level.
8) Uses information and communication technologies along with computer software at the level required by the field.
9) Follows the national and international chemistry literature, transfers the knowledge gained orally or in writing.
10) Determines self-learning needs, manages/directs his/her learning.
11) Takes responsibility and adheres to the ethical values required by these responsibilities.

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Midterms 1 % 40
Final 1 % 60
total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
total % 100

Workload and ECTS Credit Calculation

Activities Number of Activities Preparation for the Activity Spent for the Activity Itself Completing the Activity Requirements Workload
Course Hours 14 1 3 56
Study Hours Out of Class 14 0 2 28
Midterms 1 15 1 16
Final 1 25 1 26
Total Workload 126