ENS112 Occupational Health and Safety 2Istinye UniversityDegree Programs Computer Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Computer Engineering (English)

Preview

Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code: ENS112
Course Name: Occupational Health and Safety 2
Semester: Spring
Course Credits:
ECTS
2
Language of instruction: English
Course Condition:
Does the Course Require Work Experience?: No
Type of course: Compulsory Courses
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: E-Learning
Course Coordinator: Dr. Öğr. Üy. FUNDA ÖZDEMİR
Course Lecturer(s): Assist. Prof.
Course Assistants:

Course Objective and Content

Course Objectives: Giving the necessary information to ensure the occupational safety of the employees and to protect their health.
Course Content: Teaching the importance of occupational health and safety rules and first aid and safety measures.

Learning Outcomes

The students who have succeeded in this course;
1) Knows standard safety, health and safety law. Ensuring that basic rules and current regulations regarding occupational health and safety are mastered.
2) Work health
3) Safety regulations
4) Enforcement of safety regulations
5) Safety measures to be taken at work

Course Flow Plan

Week Subject Related Preparation
1) Introduction
2) SAFETY AND HEALTH PROGRAMS
3) REGULATION FOR HEALTH AND SAFETY
4) Human and vehicle movements -Danger and its control
5) MANUAL AND MECHANICAL HANDLING HAZARD AND CONTROL
6) Conveyors and elevators danger
7) Midterm
8) WORKER HEALTH AND SAFETY RULES
9) Regulation on Occupational Health and Safety Committees
10) REGULATION ON THE USE OF PERSONAL PROTECTIVE EQUIPMENT IN WORKPLACES
11) Safety measures for repair and maintenance
12) Safety Precautions for Machine Lifting
13) HEALTH AND SAFETY REGULATIONS ON THE USE OF WORK EQUIPMENT
14) Final Exam

Sources

Course Notes / Textbooks: Lecture Notes
References: The Orange Book, Management of Risk Priciples and Concepts, October 2004, HM Treasury, United Kingdom (UK).
ANSI, ANSI/ISA S84.01 and Draft IEC 61508 (1998). Safety Integrity Level - How This Standard Will Affect Your Business.
Camerun, I., Raman, R. (2005). Process Systems Risk Management, Elsevier.
Moosa, Imad A. (2007). Operational Risk: A Survey. Financial Markets, Institutions & Instruments, Vol. 16, No. 4, pp. 167-200

Course - Program Learning Outcome Relationship

Course Learning Outcomes

1

2

3

4

5

Program Outcomes
1) Adequate knowledge in mathematics, science, and computer engineering principles, both theoretical and practical, and the ability to apply this knowledge to complex engineering problems.
2) Ability to identify, formulate, and solve complex computer engineering problems using appropriate analysis and modeling techniques.
3) Ability to design and develop complex computer systems, devices, or products that meet specific requirements and operate under realistic constraints and conditions, using modern design methods.
4) Ability to develop, select and use modern techniques and tools used for the analysis and solution of complex computer engineering problems, and the ability to use information technologies effectively.
5) Ability to plan and conduct experiments, collect and analyze data, and interpret results in the study of complex computer engineering problems or research topics.
6) Ability to work effectively within and multidisciplinary teams; individual study skills.
7) Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously.
9) To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in engineering applications.
10) Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development.
11) Knowledge of the effects of computer engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in computer engineering; awareness of the legal consequences of computer engineering solutions.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Average 3 Highest
       
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science, and computer engineering principles, both theoretical and practical, and the ability to apply this knowledge to complex engineering problems.
2) Ability to identify, formulate, and solve complex computer engineering problems using appropriate analysis and modeling techniques.
3) Ability to design and develop complex computer systems, devices, or products that meet specific requirements and operate under realistic constraints and conditions, using modern design methods.
4) Ability to develop, select and use modern techniques and tools used for the analysis and solution of complex computer engineering problems, and the ability to use information technologies effectively.
5) Ability to plan and conduct experiments, collect and analyze data, and interpret results in the study of complex computer engineering problems or research topics.
6) Ability to work effectively within and multidisciplinary teams; individual study skills.
7) Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously.
9) To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in engineering applications.
10) Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development.
11) Knowledge of the effects of computer engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in computer engineering; awareness of the legal consequences of computer engineering solutions. 3

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Midterms 1 % 40
Final 1 % 60
total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
total % 100

Workload and ECTS Credit Calculation

Activities Number of Activities Workload
Course Hours 14 14
Midterms 1 20
Final 1 20
Total Workload 54