UNI149 Media and SocietyIstinye UniversityDegree Programs Software Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Software Engineering (English)

Preview

Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code: UNI149
Course Name: Media and Society
Semester: Spring
Course Credits:
ECTS
5
Language of instruction: English
Course Condition:
Does the Course Require Work Experience?: No
Type of course: University Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: E-Learning
Course Coordinator: Prof. Dr. PEYAMİ ÇELİKCAN
Course Lecturer(s): Peyami Çelikcan
Course Assistants:

Course Objective and Content

Course Objectives: This course aims to provide a comprehensive understanding of media and society relations in accordance with communicagtion theories

Course Content: The course will be covered by following topics: development of mass media, the effects of mass media, mass communication, functions of mass communication, communication theories

Learning Outcomes

The students who have succeeded in this course;
1) Understanding mass media and mass communication
2) Understanding effects of mass media on society
3) Understanding communication theories

Course Flow Plan

Week Subject Related Preparation
1) Introduction to communication
2) Basic terms of mass communication and mass media
3) Mass media and society
4) Paul Lazersfeld
5) Harold Laswell
6) 1st Quiz
7) Walter Lippman
8) Agenda Setting
9) Technological Determinism
10) International Communication
11) Cultural Imperialism
12) 2nd Quiz
13) Uses and Gratification Theory
14) Final Evaluation
15) Final

Sources

Course Notes / Textbooks: Mass Communication Theory, Denis McQuail, 6th Edition, Sage Publication, 2010.

References: Course Slides

Course - Program Learning Outcome Relationship

Course Learning Outcomes

1

2

3

Program Outcomes
1) Adequate knowledge in mathematics, science and software engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems.
2) Ability to identify, formulate, and solve complex software engineering problems; ability to select and apply appropriate analysis and modeling methods for this purpose.
3) Ability to design, implement, verify, validate, measure and maintain a complex software system, process, device or product to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose.
4) Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in software engineering applications; ability to use information technologies effectively.
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or software engineering research topics.
6) Ability to work effectively within and multidisciplinary teams; individual study skills.
7) Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; ability to write effectice reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously.
9) To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in engineering applications.
10) Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development.
11) Knowledge of the effects of software engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in software engineering; awareness of the legal consequences of software engineering solutions.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Average 3 Highest
       
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and software engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems.
2) Ability to identify, formulate, and solve complex software engineering problems; ability to select and apply appropriate analysis and modeling methods for this purpose.
3) Ability to design, implement, verify, validate, measure and maintain a complex software system, process, device or product to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose.
4) Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in software engineering applications; ability to use information technologies effectively.
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or software engineering research topics.
6) Ability to work effectively within and multidisciplinary teams; individual study skills.
7) Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; ability to write effectice reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously.
9) To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in engineering applications.
10) Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development.
11) Knowledge of the effects of software engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in software engineering; awareness of the legal consequences of software engineering solutions.

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Quizzes 2 % 50
Final 1 % 50
total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
total % 100

Workload and ECTS Credit Calculation

Activities Number of Activities Preparation for the Activity Spent for the Activity Itself Completing the Activity Requirements Workload
Course Hours 14 3 2 70
Study Hours Out of Class 14 0 2 28
Midterms 2 8 16
Final 1 10 10
Total Workload 124