UNI107 Media Broadcasting Applications Istinye UniversityDegree Programs Computer EngineeringGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Computer Engineering

Preview

Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code: UNI107
Course Name: Media Broadcasting Applications 
Semester: Fall
Spring
Course Credits:
ECTS
5
Language of instruction: Turkish
Course Condition:
Does the Course Require Work Experience?: No
Type of course: University Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator: Doç. Dr. MİHALİS KUYUCU
Course Lecturer(s): Assoc.Prof.Mihalis Kuyucu
Course Assistants:

Course Objective and Content

Course Objectives: Give basic information about media and its market applications.
Course Content: How do the Radio-TV-Newspapers and Digital Media works. Basic information about the Technology-Economy and content production in media. An industrial look to media.

Learning Outcomes

The students who have succeeded in this course;
1) To give main information about radio - tv and printed media
2) To introduce broadcasting in basic and introduction level
3) To give information about the digital media and its main characteristic differences from traditional media.

Course Flow Plan

Week Subject Related Preparation
1) The history of Radio and TV
2) Program types and structure in radio and tv
3) The functions of media
4) News in Radio and TV
5) The factors effecting the concept of rating
6) Rating calculation - CPM Calculation and the functions of RTÜK Rating researches
7) Traditional and Digital Journalism
8) Media and Music Function
9) Basics of İnternet Radio broadcasting
10) Basics of Web TV
11) Podcast concept and Podcast applications
12) Basics of Social Media Applications
13) The concuption function of Media and Advertising
14) Public Relations and Media Case Studies of Media Market

Sources

Course Notes / Textbooks: Öğretim üyesinin derlediği karma kaynaklar.
References: Öğretim üyesinin derlediği karma kaynaklar.

Course - Program Learning Outcome Relationship

Course Learning Outcomes

1

2

3

Program Outcomes
1) Adequate knowledge in mathematics, science, and computer engineering principles, both theoretical and practical, and the ability to apply this knowledge to complex engineering problems
2) To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in engineering applications.
3) Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development.
4) Knowledge of the effects of computer engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in computer engineering; awareness of the legal consequences of computer engineering solutions.
5) Ability to identify, formulate, and solve complex computer engineering problems using appropriate analysis and modeling techniques.
6) Ability to design and develop complex computer systems, devices, or products that meet specific requirements and operate under realistic constraints and conditions, using modern design methods.
7) Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously.
9) Ability to develop, select and use modern techniques and tools used for the analysis and solution of complex computer engineering problems, and the ability to use information technologies effectively.
10) Ability to plan and conduct experiments, collect and analyze data, and interpret results in the study of complex computer engineering problems or research topics.
11) Ability to work effectively within and multidisciplinary teams; individual study skills.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Average 3 Highest
       
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science, and computer engineering principles, both theoretical and practical, and the ability to apply this knowledge to complex engineering problems
2) To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in engineering applications.
3) Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development.
4) Knowledge of the effects of computer engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in computer engineering; awareness of the legal consequences of computer engineering solutions.
5) Ability to identify, formulate, and solve complex computer engineering problems using appropriate analysis and modeling techniques.
6) Ability to design and develop complex computer systems, devices, or products that meet specific requirements and operate under realistic constraints and conditions, using modern design methods.
7) Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously.
9) Ability to develop, select and use modern techniques and tools used for the analysis and solution of complex computer engineering problems, and the ability to use information technologies effectively.
10) Ability to plan and conduct experiments, collect and analyze data, and interpret results in the study of complex computer engineering problems or research topics.
11) Ability to work effectively within and multidisciplinary teams; individual study skills.

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Attendance 1 % 20
Application 2 % 10
Project 2 % 20
Midterms 1 % 20
Final 1 % 30
total % 100
PERCENTAGE OF SEMESTER WORK % 70
PERCENTAGE OF FINAL WORK % 30
total % 100

Workload and ECTS Credit Calculation

Activities Number of Activities Workload
Course Hours 16 48
Application 15 30
Study Hours Out of Class 15 30
Homework Assignments 6 12
Midterms 1 1
Total Workload 121