DIL633 Chinese 3Istinye UniversityDegree Programs Software Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Software Engineering (English)

Preview

Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code: DIL633
Course Name: Chinese 3
Semester: Fall
Spring
Course Credits:
ECTS
5
Language of instruction: English
Course Condition: DIL632 - Chinese 2
Does the Course Require Work Experience?: No
Type of course: University Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: E-Learning
Course Coordinator: Öğr. Gör. MERVE KESKİN
Course Lecturer(s): Öğr. Gör. MERVE KESKİN
Course Assistants:

Course Objective and Content

Course Objectives: Students will have acquired the ability to:

1.Read Chinese texts containing high frequency lexis and basic structures;
2.Understand basic conversations or understand the gist of more complex conversations dealing with familiar topics;
3.Talk on familiar and simple topics with reasonable fluency;
4.Write a short text or letter about familiar subjects.

Course Content: This course is designed for students who have some knowledge of the Chinese language.

Learning Outcomes

The students who have succeeded in this course;
1) Students will be able to communicate in Chinese in simple routine tasks and on familiar topics and activities
2) Students will be able to equip with the vocabulary and grammar structures to write short simple personal letters and messages
3) Students will be able to develop the reading comprehension skills for finding simple information in everyday material such as advertisements and menus
4) Students will be able to help develop an insight into the Chinese culture and daily life

Course Flow Plan

Week Subject Related Preparation
1) Public transportation
2) Asking for directions
3) Going out in the evening
4) Preparing a trip
5) Sports
6) Working
7) Shopping
8) Midterm Week
9) Feelings
10) Ordinal numbers
11) Parts of the body
12) Negation and Possessive pronouns
13) to need – to want to
14) Past Tense
15) Final Week
16) Final Week

Sources

Course Notes / Textbooks: Başarının Yolu 1&2
References: Ek alıştırmalar ve dersin öğretim görevlisi tarafından geliştirilmiş çeşitli oyunlar ve etkinlikler.

Teacher created upplementary worksheets, classroom activities and games.

Course - Program Learning Outcome Relationship

Course Learning Outcomes

1

2

3

4

Program Outcomes
1) Adequate knowledge in mathematics, science and software engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems.
2) Ability to identify, formulate, and solve complex software engineering problems; ability to select and apply appropriate analysis and modeling methods for this purpose.
3) Ability to design, implement, verify, validate, measure and maintain a complex software system, process, device or product to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose.
4) Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in software engineering applications; ability to use information technologies effectively.
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or software engineering research topics.
6) Ability to work effectively within and multidisciplinary teams; individual study skills.
7) Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; ability to write effectice reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously.
9) To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in engineering applications.
10) Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development.
11) Knowledge of the effects of software engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in software engineering; awareness of the legal consequences of software engineering solutions.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Average 3 Highest
       
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and software engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems.
2) Ability to identify, formulate, and solve complex software engineering problems; ability to select and apply appropriate analysis and modeling methods for this purpose.
3) Ability to design, implement, verify, validate, measure and maintain a complex software system, process, device or product to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose.
4) Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in software engineering applications; ability to use information technologies effectively.
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or software engineering research topics.
6) Ability to work effectively within and multidisciplinary teams; individual study skills.
7) Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; ability to write effectice reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously.
9) To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in engineering applications.
10) Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development.
11) Knowledge of the effects of software engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in software engineering; awareness of the legal consequences of software engineering solutions.

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Attendance 80 % 10
Homework Assignments 5 % 10
Midterms 1 % 35
Final 1 % 45
total % 100
PERCENTAGE OF SEMESTER WORK % 55
PERCENTAGE OF FINAL WORK % 45
total % 100

Workload and ECTS Credit Calculation

Activities Number of Activities Preparation for the Activity Spent for the Activity Itself Completing the Activity Requirements Workload
Course Hours 14 0 4 56
Homework Assignments 10 0 7 70
Midterms 1 0 1 1
Final 1 0 1 1
Total Workload 128