DIL614 Russian 4Istinye UniversityDegree Programs Mechanical Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Mechanical Engineering (English)

Preview

Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code: DIL614
Course Name: Russian 4
Semester: Spring
Course Credits:
ECTS
5
Language of instruction: English
Course Condition: DIL613 - Russian 3
Does the Course Require Work Experience?: No
Type of course: University Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator: Öğr. Gör. MERVE KESKİN
Course Lecturer(s): Öğr. Gör. ASSEM AMIRZHANOVA
Course Assistants:

Course Objective and Content

Course Objectives: It is aimed to
-Teach intermediate level of Russian speaking, writing, reading and listening skills
-Teach some complex grammatical rules of Russian and establish unified sentences
-Improve the susceptibility to conversation and to have knowledge about Russian culture.
-Make the students read intermediate level Russian literature without difficulty.
Course Content: Mainly reading and listening activities are done by focusing on intermediate vocabulary items and grammar structures in Russian. In addition to the daily speech patterns, activities that help the students to understand the written and oral input in Russian are used and practiced as group or pair activities in the classroom.

Learning Outcomes

The students who have succeeded in this course;
1) The student is able to read both abstract and factual texts and understand the main ideas.
2) The student is able to communicate with a native Russian speaker without much difficulty.
3) Stusent is able to participate in dialogues in a significantly wide range of everyday situations, initiate, maintain and end a dialogue; speak on different topics formulate an own statement.
4) Although there may be some difficulty with some complex forms and words, the student is able to read with a comprehensive vocabulary knowledge.

Course Flow Plan

Week Subject Related Preparation
1) Advicing our classmates about the best way to learn Russian, recommendations
2) Looking for a housemate to share a house and designing a house describing a house, location of objects
3) Describing our classmates, relationships between people, resemblences between people
4) Formal language, invitations, presentations, asking for favors
5) Plan a day in a Russian city, activities, schedule
6) Preparing a buffet for a party, likes and dislikes
7) listing the most interesting things to do in a place, experiences
8) Midterm
9) finding solutions, giving advice, feelings
10) Talking about the most interesting time in our history, circumstances in the past, actions in the past and present
11) Talking about personal anecdotes, talking about the past
12) Designing an advertising campaign, giving instructions
13) Imagining what we will be in the future, talking about future actions
14) Semester Revision
15) Final Exam
16) Final Exam

Sources

Course Notes / Textbooks: Way to Russia 2
References: Ek alıştırmalar ve dersin öğretim görevlisi tarafından geliştirilmiş çeşitli oyunlar ve etkinlikler.

Teacher created upplementary worksheets, classroom activities and games

Course - Program Learning Outcome Relationship

Course Learning Outcomes

1

2

3

4

Program Outcomes
1) Build up a body of knowledge in mathematics, science and Mechanical Engineering subjects; use theoretical and applied information in these areas to model and solve complex engineering problems.
2) Identify, formulate, and solve complex Mechanical Engineering problems; select and apply proper modeling and analysis methods for this purpose.
3) Design complex Mechanical systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose.
4) Devise, select, and use modern techniques and tools needed for solving complex problems in Mechanical Engineering practice; employ information technologies effectively.
5) Design and conduct numerical or pysical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Mechanical Engineering.
6) Cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Mechanical-related problems.
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing. Write and understand reports, prepare design and production reports, deliver effective presentations, give and receive clear and understandable instructions.
8) Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself.
9) Develop an awareness of professional and ethical responsibility, and behave accordingly. Be informed about the standards used in Mechanical Engineering applications.
10) Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development.
11) Acquire knowledge about the effects of practices of Mechanical Engineering on health, environment, security in universal and social scope, and the contemporary problems of Mechatronics engineering; is aware of the legal consequences of Mechanical engineering solutions.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Average 3 Highest
       
Program Outcomes Level of Contribution
1) Build up a body of knowledge in mathematics, science and Mechanical Engineering subjects; use theoretical and applied information in these areas to model and solve complex engineering problems.
2) Identify, formulate, and solve complex Mechanical Engineering problems; select and apply proper modeling and analysis methods for this purpose.
3) Design complex Mechanical systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose.
4) Devise, select, and use modern techniques and tools needed for solving complex problems in Mechanical Engineering practice; employ information technologies effectively.
5) Design and conduct numerical or pysical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Mechanical Engineering.
6) Cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Mechanical-related problems.
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing. Write and understand reports, prepare design and production reports, deliver effective presentations, give and receive clear and understandable instructions.
8) Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself.
9) Develop an awareness of professional and ethical responsibility, and behave accordingly. Be informed about the standards used in Mechanical Engineering applications.
10) Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development.
11) Acquire knowledge about the effects of practices of Mechanical Engineering on health, environment, security in universal and social scope, and the contemporary problems of Mechatronics engineering; is aware of the legal consequences of Mechanical engineering solutions.

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Attendance 1 % 10
Homework Assignments 10 % 10
Midterms 1 % 35
Final 1 % 45
total % 100
PERCENTAGE OF SEMESTER WORK % 55
PERCENTAGE OF FINAL WORK % 45
total % 100

Workload and ECTS Credit Calculation

Activities Number of Activities Preparation for the Activity Spent for the Activity Itself Completing the Activity Requirements Workload
Course Hours 14 0 4 56
Homework Assignments 10 0 7 70
Midterms 1 0 1 1
Final 1 0 1 1
Total Workload 128