DIL608 French 8Istinye UniversityDegree Programs Electrical and Electronic Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Electrical and Electronic Engineering (English)

Preview

Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code: DIL608
Course Name: French 8
Semester: Fall
Course Credits:
ECTS
5
Language of instruction: English
Course Condition: DIL607 - French 7
Does the Course Require Work Experience?: No
Type of course: University Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: E-Learning
Course Coordinator: Öğr. Gör. MERVE KESKİN
Course Lecturer(s):
Course Assistants:

Course Objective and Content

Course Objectives: Achieve functional proficiency in listening, speaking, reading, and writing. Recognize culture-specific perspectives and values embedded in language behavior. Decode, analyze, and interpret authentic texts of different genres. Produce organized coherent discourse in oral and written modes.

Course Content: Students in the French program will develop in-depth content knowledge about Francophone cultures, literatures, and linguistics, as well as advanced skills in the areas of intercultural competence, critical thinking, collaborative problem-solving, and language proficiency (speaking, listening, reading, and writing).

Learning Outcomes

The students who have succeeded in this course;
1) By the end of this course, students will be able to ask and answer simple questions and hold simple conversations in present tense.

Course Flow Plan

Week Subject Related Preparation
1) Meet & Greet Introduction of the syllabus and curriculum
2) Revision
3) Unit 1
4) Unit 1
5) Unit 1
6) Unit 2
7) Revision
8) Midterm
9) Exam review
11) Unit 2
12) Unit 2
13) Revision
14) Final

Sources

Course Notes / Textbooks: Alter Ego 1+: Course Book + Workbook will be used as our main course material

Extra resources:
Le Nouveau Taxi 1: Course Book + Workbook
La Grammaire Progressive du Français A1-A2 & B1-B2
Le Vocabulaire Progressif du français A1-A2 & B1-B2
References: Ek alıştırmalar ve dersin öğretim görevlisi tarafından geliştirilmiş çeşitli oyunlar ve etkinlikler.

Teacher created upplementary worksheets, classroom activities and games.

Course - Program Learning Outcome Relationship

Course Learning Outcomes

1

Program Outcomes
1) Adequate knowledge in mathematics, science and Electrical and Electronics engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems.
2) Ability to identify, formulate, and solve complex electrical and electronics engineering problems; ability to select and apply appropriate analysis and modeling methods for this purpose.
3) Ability to design a complex circuit, device or system to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose.
4) Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in electrical and electronics engineering applications; ability to use information technologies effectively.
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or electrical and electronics engineering research topics.
6) Ability to work effectively within and multidisciplinary teams; individual study skills.
7) Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; ability to write effectice reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously.
9) To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in electrical and electronics engineering applications.
10) Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development.
11) Knowledge of the effects of electrical and electronics engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in electrical and electronics engineering; awareness of the legal consequences of electrical and electronics engineering solutions.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Average 3 Highest
       
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and Electrical and Electronics engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems.
2) Ability to identify, formulate, and solve complex electrical and electronics engineering problems; ability to select and apply appropriate analysis and modeling methods for this purpose.
3) Ability to design a complex circuit, device or system to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose.
4) Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in electrical and electronics engineering applications; ability to use information technologies effectively.
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or electrical and electronics engineering research topics.
6) Ability to work effectively within and multidisciplinary teams; individual study skills.
7) Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; ability to write effectice reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously.
9) To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in electrical and electronics engineering applications.
10) Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development.
11) Knowledge of the effects of electrical and electronics engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in electrical and electronics engineering; awareness of the legal consequences of electrical and electronics engineering solutions.

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
total %
PERCENTAGE OF SEMESTER WORK % 0
PERCENTAGE OF FINAL WORK %
total %

Workload and ECTS Credit Calculation

Activities Number of Activities Preparation for the Activity Spent for the Activity Itself Completing the Activity Requirements Workload
Course Hours 4 4 4 32
Application 4 0 4 16
Study Hours Out of Class 4 4 4 32
Presentations / Seminar 1 3 1 4
Project 1 3 1 4
Homework Assignments 10 3 1 40
Quizzes 1 0 1 1
Midterms 1 4 2 6
Final 1 4 2 6
Total Workload 141