JOB152 Podcast and Radio Wokshop with Michael KuyucuIstinye UniversityDegree Programs Electrical and Electronic Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Electrical and Electronic Engineering (English)

Preview

Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code: JOB152
Course Name: Podcast and Radio Wokshop with Michael Kuyucu
Semester: Spring
Fall
Course Credits:
ECTS
5
Language of instruction: English
Course Condition:
Does the Course Require Work Experience?: No
Type of course: University Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator: Öğr. Gör. BERİL TOPER
Course Lecturer(s):
Course Assistants:

Course Objective and Content

Course Objectives: The aim of this course is to provide students with both theoretical and practical knowledge about podcasting and radio broadcasting, enabling them to plan and produce their own radio shows and podcast content.
Course Content: The course covers the fundamentals of radio broadcasting, podcast production processes, content planning, audio recording techniques, editing, and publishing strategies. Throughout the semester, students will develop their own podcast projects individually or in groups.

Learning Outcomes

The students who have succeeded in this course;
1) Students will be able to explain the basic theoretical concepts of radio and podcast broadcasting.
2) Students will be able to plan content and write scripts for a podcast broadcast.
3) Students will be able to use technical equipment to record and edit audio content.

Course Flow Plan

Week Subject Related Preparation
1) Introduction, What Are Podcast and Radio?
2) History and Evolution of Broadcasting
3) Radio Types and Formats
4) Podcast Types and Contemporary Examples
5) Content Development and Target Audience
6) Script Writing and Broadcast Planning
7) Audio Recording Techniques and Equipment
8) Midterm Exam
9) Introduction to Editing Software (Audacity etc.)
10) Audio Editing Practice
11) Use of Jingles, Music, and Sound Effects
12) Publishing and Distribution Platforms
13) Workshop on Student Projects
14) Final Project Presentations and Evaluation

Sources

Course Notes / Textbooks:
References:

Course - Program Learning Outcome Relationship

Course Learning Outcomes

1

2

3

Program Outcomes
1) Adequate knowledge in mathematics, science and Electrical and Electronics engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems.
2) Ability to identify, formulate, and solve complex electrical and electronics engineering problems; ability to select and apply appropriate analysis and modeling methods for this purpose.
3) Ability to design a complex circuit, device or system to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose.
4) Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in electrical and electronics engineering applications; ability to use information technologies effectively.
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or electrical and electronics engineering research topics.
6) Ability to work effectively within and multidisciplinary teams; individual study skills.
7) Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; ability to write effectice reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously.
9) To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in electrical and electronics engineering applications.
10) Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development.
11) Knowledge of the effects of electrical and electronics engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in electrical and electronics engineering; awareness of the legal consequences of electrical and electronics engineering solutions.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Average 3 Highest
       
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and Electrical and Electronics engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems.
2) Ability to identify, formulate, and solve complex electrical and electronics engineering problems; ability to select and apply appropriate analysis and modeling methods for this purpose.
3) Ability to design a complex circuit, device or system to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose.
4) Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in electrical and electronics engineering applications; ability to use information technologies effectively.
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or electrical and electronics engineering research topics.
6) Ability to work effectively within and multidisciplinary teams; individual study skills.
7) Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; ability to write effectice reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously.
9) To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in electrical and electronics engineering applications.
10) Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development.
11) Knowledge of the effects of electrical and electronics engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in electrical and electronics engineering; awareness of the legal consequences of electrical and electronics engineering solutions.

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
total %
PERCENTAGE OF SEMESTER WORK % 0
PERCENTAGE OF FINAL WORK %
total %

Workload and ECTS Credit Calculation

Activities Number of Activities Preparation for the Activity Spent for the Activity Itself Completing the Activity Requirements Workload
Total Workload