ENS010 Nanoscience and EngineeringIstinye UniversityDegree Programs Molecular Biology and Genetics (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Molecular Biology and Genetics (English)

Preview

Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code: ENS010
Course Name: Nanoscience and Engineering
Semester: Fall
Course Credits:
ECTS
5
Language of instruction: English
Course Condition:
Does the Course Require Work Experience?: No
Type of course: Departmental Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: E-Learning
Course Coordinator: Doç. Dr. PINAR ÇAKIR HATIR
Course Lecturer(s): Assoc. Prof. Dr. Ali Zarrabi
Course Assistants:

Course Objective and Content

Course Objectives: In this course, it is aimed to know the principles of nanoscience and nanotechnology, to define the priorities of nanosized materials compared to bulk materials, and to have information about the applications of nanomaterials in different fields.
Course Content: In this course, the students will learn principals of nanoscience & nanotechnology as well as the unique mechanical, physico-chemical, electrical, optical and magnetic properties of nanomaterials as a result of reduction in size. Then, practical approaches to nanomaterials’ synthesis, characterization, and their applications in different disciplines will be discussed.

Learning Outcomes

The students who have succeeded in this course;
1) Know the principals of nanoscience and nanotechnology
2) Can convey the priorities of nanosized materials over bulk materials
3) Would have knowledge about applications of nanomaterials in different fields

Course Flow Plan

Week Subject Related Preparation
1) Course description; Introduction to nano
2) Nanoscience & Nanotechnology
3) Why size matters?
4) Nanomaterials classification
5) Nanomaterials in non-medical applications
6) Nanomaterials & their applications in health 1
7) Nanomaterials & their applications in health 2
8) Midterm Exam
9) Polymeric nanoparticles
10) Lipid-based nanoparticles
11) Carbon-based nanoparticles
12) Nanomaterials synthesis
13) Nanomaterials characterization
14) Nanotoxicology

Sources

Course Notes / Textbooks: “Nanostructured Materials”, 2020, Editors: T. Daniel Thangadurai, N. Manjubaashini, Sabu Thomas, Hanna J. Maria; Springer.
References: “Colloidal Foundations of Nanoscience”, 2014, Editors: D. Berty, G. PALAZZO; Elsevier.

Course - Program Learning Outcome Relationship

Course Learning Outcomes

1

2

3

Program Outcomes
1) Has a theoretical and practical background in biology, chemistry, physics and mathematics, which constitute the basic knowledge in the field of molecular biology and genetics.
2) Can explain biological phenomena and events at molecular level and relate them to other basic sciences and engineering applications.
3) Has the basic laboratory knowledge and skills required by the field.
4) Works in accordance with scientific principles and ethical rules.
5) Uses procedural and mathematical software programs required for the analysis and basic evaluation of biological data at least at the European Computer License Basic Level.
6) Has the knowledge, culture and skills to follow the literature and current methods related to his field.
7) Will be able to identify the main problem in line with the needs in health, agriculture, animal husbandry, environment, industry and similar issues and offer the necessary solutions by using up-to-date technology.
8) Has the knowledge and ability to evaluate biological phenomena and events at the level of systems from an evolutionary point of view.
9) Has the ability to be involved in individual and group work, to prepare and carry out projects on specific topics, and to make written and oral presentations.
10) Uses at least one foreign language in reading, writing and speaking at B1 General Level in terms of European Language Portfolio criteria.
11) Has the ability to identify social and global problems using his / her field knowledge and to be a part of the solution in interdisciplinary cooperation.
12) Respects social, cultural and individual differences, universal values and human rights in his / her scientific and professional activities.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Average 3 Highest
       
Program Outcomes Level of Contribution
1) Has a theoretical and practical background in biology, chemistry, physics and mathematics, which constitute the basic knowledge in the field of molecular biology and genetics.
2) Can explain biological phenomena and events at molecular level and relate them to other basic sciences and engineering applications.
3) Has the basic laboratory knowledge and skills required by the field.
4) Works in accordance with scientific principles and ethical rules.
5) Uses procedural and mathematical software programs required for the analysis and basic evaluation of biological data at least at the European Computer License Basic Level.
6) Has the knowledge, culture and skills to follow the literature and current methods related to his field.
7) Will be able to identify the main problem in line with the needs in health, agriculture, animal husbandry, environment, industry and similar issues and offer the necessary solutions by using up-to-date technology.
8) Has the knowledge and ability to evaluate biological phenomena and events at the level of systems from an evolutionary point of view.
9) Has the ability to be involved in individual and group work, to prepare and carry out projects on specific topics, and to make written and oral presentations.
10) Uses at least one foreign language in reading, writing and speaking at B1 General Level in terms of European Language Portfolio criteria.
11) Has the ability to identify social and global problems using his / her field knowledge and to be a part of the solution in interdisciplinary cooperation. 2
12) Respects social, cultural and individual differences, universal values and human rights in his / her scientific and professional activities.

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Midterms 1 % 50
Final 1 % 50
total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
total % 100

Workload and ECTS Credit Calculation

Activities Number of Activities Preparation for the Activity Spent for the Activity Itself Completing the Activity Requirements Workload
Course Hours 14 1 14
Study Hours Out of Class 14 4 56
Midterms 1 25 25
Final 1 30 30
Total Workload 125