UNI352 Principles and Applications of Analytical Research MethodsIstinye UniversityDegree Programs Chemistry (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Chemistry (English)

Preview

Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code: UNI352
Course Name: Principles and Applications of Analytical Research Methods
Semester: Spring
Course Credits:
ECTS
5
Language of instruction: English
Course Condition:
Does the Course Require Work Experience?: No
Type of course: University Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: E-Learning
Course Coordinator: Dr. Öğr. Üy. ESMA NUR OKATAN
Course Lecturer(s): Dr. Öğr. Ü. Esma Nur Okatan
Course Assistants:

Course Objective and Content

Course Objectives: The main purpose of the course is to enable students to adapt more easily to evidence-based medicine practices and to better understand the current scientific data published in their fields. In addition, encouraging students to participate in scientific research projects is one of the aims of this course.
Course Content: Introduction to research methodology
Immunological techniques
Microscopy and application areas
Bioluminescence and application areas
Electrophysiological recording methods
Radioactive isotopes and applications
Spectroscopy and application areas
In vivo experimental disease models
In vitro experimental disease models
Cellular Signaling

Learning Outcomes

The students who have succeeded in this course;
1) To have basic knowledge of basic medical science research methods
2) To be able to understand the main ideas of scientific research articles
3) Reinforcement of basic knowledge learned in comittee lectures with clinical and research examples

Course Flow Plan

Week Subject Related Preparation
1) Introduction to research metodology
2) Immunological techniques-I
3) Immunological techniques-II
4) Microscopy and its applications-I
5) Microscopy and its applications-II
6) Bioluminescence and its applications
7) Electrophysiological Recording Techniques-I
8) Electrophysiological Recording Techniques-II
9) Discussion of the assignments
10) Radioactive isotopes and its applications
11) Specktroscopy and its applications-I
12) In vivo experimental disease models
13) In vitro experimental disease models
14) Cell Signaling

Sources

Course Notes / Textbooks: Helmut Giinzler and Alex Williams Handbook of Analytical Techniques 2002 Wiley,

Roitt’s Essential Immunology, Thirteenth Edition. Peter J. Delves, Seamus J. Martin,Dennis R. Burton, and Ivan M. Roitt.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.Companion

https://pubmed.ncbi.nlm.nih.gov/
References: Helmut Giinzler and Alex Williams Handbook of Analytical Techniques 2002 Wiley,

Roitt’s Essential Immunology, Thirteenth Edition. Peter J. Delves, Seamus J. Martin,Dennis R. Burton, and Ivan M. Roitt.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.Companion

https://pubmed.ncbi.nlm.nih.gov/

Course - Program Learning Outcome Relationship

Course Learning Outcomes

1

2

3

Program Outcomes
1) Knows the basic concepts related to the theory and applications of chemistry, uses theoretical and applied knowledge, can select, develop and design methods.
2) Makes experimental planning and application for analysis, synthesis, separation and purification methods, provide solutions to the problems encountered and interpret the results.
3) Expresses the basic principles of sample preparation techniques and instrumental analysis methods used in qualitative and quantitative analysis of items, discusses their application areas.
4) Has knowledge about the sources, production, industrial applications and technologies of chemical substances.
5) Makes structural analyzes of chemical substances and interprets the results.
6) Work individually and in multidisciplinary groups, take responsibility, plan their tasks and use time effectively.
7) Follows the information in the field and communicates with colleagues by using English at a professional level.
8) Uses information and communication technologies along with computer software at the level required by the field.
9) Follows the national and international chemistry literature, transfers the knowledge gained orally or in writing.
10) Determines self-learning needs, manages/directs his/her learning.
11) Takes responsibility and adheres to the ethical values required by these responsibilities.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Average 3 Highest
       
Program Outcomes Level of Contribution
1) Knows the basic concepts related to the theory and applications of chemistry, uses theoretical and applied knowledge, can select, develop and design methods.
2) Makes experimental planning and application for analysis, synthesis, separation and purification methods, provide solutions to the problems encountered and interpret the results.
3) Expresses the basic principles of sample preparation techniques and instrumental analysis methods used in qualitative and quantitative analysis of items, discusses their application areas.
4) Has knowledge about the sources, production, industrial applications and technologies of chemical substances.
5) Makes structural analyzes of chemical substances and interprets the results.
6) Work individually and in multidisciplinary groups, take responsibility, plan their tasks and use time effectively.
7) Follows the information in the field and communicates with colleagues by using English at a professional level.
8) Uses information and communication technologies along with computer software at the level required by the field.
9) Follows the national and international chemistry literature, transfers the knowledge gained orally or in writing.
10) Determines self-learning needs, manages/directs his/her learning.
11) Takes responsibility and adheres to the ethical values required by these responsibilities.

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 2 % 100
total % 100
PERCENTAGE OF SEMESTER WORK % 100
PERCENTAGE OF FINAL WORK %
total % 100

Workload and ECTS Credit Calculation

Activities Number of Activities Preparation for the Activity Spent for the Activity Itself Completing the Activity Requirements Workload
Homework Assignments 2 60 120
Total Workload 120