Biomedical Engineering (English)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code: UNI334
Course Name: Communication Strategies
Semester: Spring
Course Credits:
ECTS
5
Language of instruction: English
Course Condition:
Does the Course Require Work Experience?: No
Type of course: University Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: E-Learning
Course Coordinator: Doç. Dr. ASUMAN KUTLU
Course Lecturer(s): Assoc Prof. Asuman Kutlu
Course Assistants:

Course Objective and Content

Course Objectives: This course aims to help students understand communication process and develop strategies to improve their communication skills.
Course Content: This course covers communication process, verbal and non-verbal communication in interpersonal relationship, organizational communication, perception and persuasive communication and media studies.

Learning Outcomes

The students who have succeeded in this course;
1) Will be able to develop an understanding of communication process.
2) Will be able to appreciate the role of verbal and non-verbal communication skills in effective communication.
3) Will be able to recognize the impact of perception in communication,
4) Will be able to have an understanding of communication in different contexts.

Course Flow Plan

Week Subject Related Preparation
1) Introduction to Communication and Components of Communication Process
2) Verbal Communication-Public speaking
3) Verbal Communication-The Importance of Listening
4) Non-verbal Communication
5) Perception and Communication
6) Organizational Communication
7) Persuasive Communication
8) Midterm
9) Mass Communication
10) Mass Communication Theories
11) Online Communication
12) Media Literacy and Digital Media
13) Genel Değerlendirme
14) Final examination

Sources

Course Notes / Textbooks: Stanley Baran ve Dennis K. Davis (2011) Mass Communication Theory: Foundations, Ferment, and Future, Boston, Wadsworth.
References: Nazife Güngör (2021) İletişime Giriş, Ankara, Siyasal Kitabevi

Course - Program Learning Outcome Relationship

Course Learning Outcomes

1

2

3

4

Program Outcomes
1) Adequate knowledge of mathematics, science and biomedical engineering disciplines; Ability to use theoretical and applied knowledge in these fields in solving complex engineering problems.
2) Ability to identify, formulate and solve complex biomedical engineering problems; ability to select and apply appropriate analysis and modeling methods for this purpose.
3) Ability to design a complex system, process, device or product to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose.
4) Ability to select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in biomedical engineering practices; Ability to use information technologies effectively.
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the investigation of complex biomedical engineering problems or discipline-specific research topics.
6) Ability to work effectively in disciplinary and multi-disciplinary teams; individual working skills.
7) Ability to communicate effectively orally and in writing; knowledge of at least one foreign language, ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the necessity of lifelong learning; the ability to access information, follow developments in science and technology, and constantly renew oneself.
9) Knowledge of ethical principles, professional and ethical responsibility, and standards used in engineering practices.
10) Knowledge of business practices such as project management, risk management and change management; awareness of entrepreneurship, innovation; information about sustainable development.
11) Information about the effects of biomedical engineering practices on health, environment and safety in universal and social dimensions and the problems of the age reflected in the field of engineering; Awareness of the legal consequences of biomedical engineering solutions.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Average 3 Highest
       
Program Outcomes Level of Contribution
1) Adequate knowledge of mathematics, science and biomedical engineering disciplines; Ability to use theoretical and applied knowledge in these fields in solving complex engineering problems.
2) Ability to identify, formulate and solve complex biomedical engineering problems; ability to select and apply appropriate analysis and modeling methods for this purpose.
3) Ability to design a complex system, process, device or product to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose.
4) Ability to select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in biomedical engineering practices; Ability to use information technologies effectively.
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the investigation of complex biomedical engineering problems or discipline-specific research topics.
6) Ability to work effectively in disciplinary and multi-disciplinary teams; individual working skills.
7) Ability to communicate effectively orally and in writing; knowledge of at least one foreign language, ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the necessity of lifelong learning; the ability to access information, follow developments in science and technology, and constantly renew oneself.
9) Knowledge of ethical principles, professional and ethical responsibility, and standards used in engineering practices.
10) Knowledge of business practices such as project management, risk management and change management; awareness of entrepreneurship, innovation; information about sustainable development.
11) Information about the effects of biomedical engineering practices on health, environment and safety in universal and social dimensions and the problems of the age reflected in the field of engineering; Awareness of the legal consequences of biomedical engineering solutions.

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Presentation 1 % 40
Final 1 % 60
total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
total % 100

Workload and ECTS Credit Calculation

Activities Number of Activities Preparation for the Activity Spent for the Activity Itself Completing the Activity Requirements Workload
Course Hours 14 3 3 84
Study Hours Out of Class 14 0 3 42
Midterms 1 0 3 3
Final 1 0 3 3
Total Workload 132