Electrical and Electronic Engineering (English) | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code: | UNI328 | ||||
Course Name: | Socio-spatial Practices | ||||
Semester: |
Spring Fall |
||||
Course Credits: |
|
||||
Language of instruction: | English | ||||
Course Condition: | |||||
Does the Course Require Work Experience?: | No | ||||
Type of course: | University Elective | ||||
Course Level: |
|
||||
Mode of Delivery: | E-Learning | ||||
Course Coordinator: | Öğr. Gör. ELİF EBRU YILMAZ | ||||
Course Lecturer(s): | Elif Ebru Yılmaz | ||||
Course Assistants: |
Course Objectives: | The aim of the course is to develop the skills of discussing the relations between social movements and the components of the urban environment by making use of theoretical thinking practices. |
Course Content: | In this course, the daily and collective rhythms of social and ideological practices in crisis spaces that are shaped by where various cultural, economic and political conflicts intersect in different geographies of the world will be discussed from the perspective of social theory. |
The students who have succeeded in this course;
1) • develop the ability to discuss conceptual thinking practices over spatial and social structures. 2) • develop the ability to conduct research and literature review. 3) • develop their skills in writing articles and making references in line with research. 4) • develop their presentation skills. |
Week | Subject | Related Preparation |
1) | Introduction What is Architecture as a discipline? | |
2) | Space - Place Relation | |
3) | City and Politics | |
4) | What is Heterotopia? | |
5) | Heterotopia | |
6) | Non-binary architecture | |
7) | Midterm | |
8) | Presentations | |
9) | Presentations | |
10) | Spatial Agency and Alternative Practices | |
11) | Immigration and Refugee | |
12) | City, Camp, Commoning | |
13) | Forensic Architecture | |
14) | Refugee Heritage |
Course Notes / Textbooks: | • Agamben, G. 2013. Kutsal İnsan, Egemen İktidar ve Çıplak Hayat. Çeviren: İsmail Türkmen, İstanbul: Ayrıntı Yayınları. • Bonnevier, K. 2005. A Queer Analysis of Eileen Gray’s E.1027. London and New York: Routledge Press. • Foucault, M. 1984. Of Other Spaces: Utopias and Heterotopias. Translated by Jay Miskowiec. Architecture /Mouvement/ Continuité. • Sennet, R. 2008. Ten ve Taş, Batı Uygarlığında Beden ve Şehir. Çeviren: Tuncay Birkan. İstanbul: Metis Yayınları. • Sharr, A. 2013. Mimarlar için Heidegger. Çeviren: Volkan Atmaca. İstanbul: Yem Yayınları. • Tanju, Bülent. Hollanda’da Tasarım: Sonlu ve Sonsuz Oyunlar. Manifold. 2018. • Tanyeli, Uğur. 2017. Yıkarak Yapmak: Anarşist Bir Mimarlık Kuramı İçin Altlık. İstanbul: Metis Yayınları. |
References: | • Bauman, Z. 2015. Sosyolojik Düşünmek. Çeviren: Abdullah Yılmaz. İstanbul: Ayrıntı Yayınları. • Lefebvre, H. 2015. Mekanın Üretimi. Çeviren: Işık Ergüden. İstanbul: Sel Yayınları. • Petti, A. 2013. Arredamento Mimarlık. Sayı 288. Kamp/Mülteci: Çatışma Mekanlarında Sömürgesizleştirme Mimarlığı. |
Course Learning Outcomes | 1 |
2 |
3 |
4 |
|||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Program Outcomes | |||||||||||
1) Adequate knowledge in mathematics, science and Electrical and Electronics engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems. | |||||||||||
2) Ability to identify, formulate, and solve complex electrical and electronics engineering problems; ability to select and apply appropriate analysis and modeling methods for this purpose. | |||||||||||
3) Ability to design a complex circuit, device or system to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose. | |||||||||||
4) Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in electrical and electronics engineering applications; ability to use information technologies effectively. | |||||||||||
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or electrical and electronics engineering research topics. | |||||||||||
6) Ability to work effectively within and multidisciplinary teams; individual study skills. | |||||||||||
7) Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; ability to write effectice reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions. | |||||||||||
8) Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously. | |||||||||||
9) To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in electrical and electronics engineering applications. | |||||||||||
10) Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development. | |||||||||||
11) Knowledge of the effects of electrical and electronics engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in electrical and electronics engineering; awareness of the legal consequences of electrical and electronics engineering solutions. |
No Effect | 1 Lowest | 2 Average | 3 Highest |
Program Outcomes | Level of Contribution | |
1) | Adequate knowledge in mathematics, science and Electrical and Electronics engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems. | |
2) | Ability to identify, formulate, and solve complex electrical and electronics engineering problems; ability to select and apply appropriate analysis and modeling methods for this purpose. | |
3) | Ability to design a complex circuit, device or system to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose. | |
4) | Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in electrical and electronics engineering applications; ability to use information technologies effectively. | |
5) | Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or electrical and electronics engineering research topics. | |
6) | Ability to work effectively within and multidisciplinary teams; individual study skills. | |
7) | Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; ability to write effectice reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions. | |
8) | Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously. | |
9) | To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in electrical and electronics engineering applications. | |
10) | Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development. | |
11) | Knowledge of the effects of electrical and electronics engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in electrical and electronics engineering; awareness of the legal consequences of electrical and electronics engineering solutions. |
Semester Requirements | Number of Activities | Level of Contribution |
Midterms | 1 | % 30 |
Final | 1 | % 70 |
total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 30 | |
PERCENTAGE OF FINAL WORK | % 70 | |
total | % 100 |
Activities | Number of Activities | Workload |
Course Hours | 16 | 64 |
Study Hours Out of Class | 16 | 48 |
Homework Assignments | 1 | 4 |
Midterms | 1 | 4 |
Final | 1 | 5 |
Total Workload | 125 |