UNI328 Socio-spatial PracticesIstinye UniversityDegree Programs Industrial and Systems Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Industrial and Systems Engineering (English)

Preview

Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code: UNI328
Course Name: Socio-spatial Practices
Semester: Fall
Spring
Course Credits:
ECTS
5
Language of instruction: English
Course Condition:
Does the Course Require Work Experience?: No
Type of course: University Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: E-Learning
Course Coordinator: Öğr. Gör. ELİF EBRU YILMAZ
Course Lecturer(s): Elif Ebru Yılmaz
Course Assistants:

Course Objective and Content

Course Objectives: The aim of the course is to develop the skills of discussing the relations between social movements and the components of the urban environment by making use of theoretical thinking practices.
Course Content: In this course, the daily and collective rhythms of social and ideological practices in crisis spaces that are shaped by where various cultural, economic and political conflicts intersect in different geographies of the world will be discussed from the perspective of social theory.

Learning Outcomes

The students who have succeeded in this course;
1) • develop the ability to discuss conceptual thinking practices over spatial and social structures.
2) • develop the ability to conduct research and literature review.
3) • develop their skills in writing articles and making references in line with research.
4) • develop their presentation skills.

Course Flow Plan

Week Subject Related Preparation
1) Introduction What is Architecture as a discipline?
2) Space - Place Relation
3) City and Politics
4) What is Heterotopia?
5) Heterotopia
6) Non-binary architecture
7) Midterm
8) Presentations
9) Presentations
10) Spatial Agency and Alternative Practices
11) Immigration and Refugee
12) City, Camp, Commoning
13) Forensic Architecture
14) Refugee Heritage

Sources

Course Notes / Textbooks: • Agamben, G. 2013. Kutsal İnsan, Egemen İktidar ve Çıplak Hayat. Çeviren: İsmail Türkmen, İstanbul: Ayrıntı Yayınları.
• Bonnevier, K. 2005. A Queer Analysis of Eileen Gray’s E.1027. London and New York: Routledge Press.
• Foucault, M. 1984. Of Other Spaces: Utopias and Heterotopias. Translated by Jay Miskowiec. Architecture /Mouvement/ Continuité.
• Sennet, R. 2008. Ten ve Taş, Batı Uygarlığında Beden ve Şehir. Çeviren: Tuncay Birkan. İstanbul: Metis Yayınları.
• Sharr, A. 2013. Mimarlar için Heidegger. Çeviren: Volkan Atmaca. İstanbul: Yem Yayınları.
• Tanju, Bülent. Hollanda’da Tasarım: Sonlu ve Sonsuz Oyunlar. Manifold. 2018.
• Tanyeli, Uğur. 2017. Yıkarak Yapmak: Anarşist Bir Mimarlık Kuramı İçin Altlık. İstanbul: Metis Yayınları.
References: • Bauman, Z. 2015. Sosyolojik Düşünmek. Çeviren: Abdullah Yılmaz. İstanbul: Ayrıntı Yayınları.
• Lefebvre, H. 2015. Mekanın Üretimi. Çeviren: Işık Ergüden. İstanbul: Sel Yayınları.
• Petti, A. 2013. Arredamento Mimarlık. Sayı 288. Kamp/Mülteci: Çatışma Mekanlarında Sömürgesizleştirme Mimarlığı.

Course - Program Learning Outcome Relationship

Course Learning Outcomes

1

2

3

4

Program Outcomes
1) Acquires sufficient accumulation of knowledge in natural and applied sciences, engineering and technology, and has the ability to design, and identify/formulate/solve problems related to, complex manufacturing and service systems using this knowledge.
2) Possesses the ability to select and apply appropriate methods for analysing integrated systems comprising humans, knowledge, raw materials and energy; to acquire, process and interpret data; and to reach conclusions using her/his engineering skills.
3) Has the ability to select and efficiently use engineering design principles along with appropriate analytical, computational and experimental engineering techniques in order to optimize outputs related to various systems under realistic constraints.
4) Possesses the skills to select from among and efficiently use modern technologies, equipment, software and software languages in applications related to her/his respective field.
5) Possesses the ability to produce industry-focused solutions that are able to contribute to social health, safety and welfare, while being cognizant of global, cultural, societal, economical and environmental matters.
6) Has the awareness to take decisions ethically, professionally and without overlooking her/his legal responsibilities in situations related to her/his professions.
7) Has the awareness about contemporary issues such as sustainability, entrepreneurship and innovation; and the ability to comprehend the impacts of these notions on her/his profession.
8) Has the skills to communicate and make presentations to a level that will allow her/him to effectively make an exchange of information and experience both verbally and in written and with various communities related to her/his area.
9) Is able to use a foreign language at least at B1 level, measured in terms of the European Language Portfolio criterion.
10) In cognizance of life-long learning, possesses the ability to follow and adapt to changes that may arise in her/his field and reflect them into her/his profession.
11) Has the ability to work efficiently in interdisciplinary projects, be open to collaboration and take initiative when necessary, manage risks, plan activities and develop strategies.
12) She has the ability to follow new approaches in the field of human-machine interaction and artificial intelligence and apply them to problems in her field.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Average 3 Highest
       
Program Outcomes Level of Contribution
1) Acquires sufficient accumulation of knowledge in natural and applied sciences, engineering and technology, and has the ability to design, and identify/formulate/solve problems related to, complex manufacturing and service systems using this knowledge.
2) Possesses the ability to select and apply appropriate methods for analysing integrated systems comprising humans, knowledge, raw materials and energy; to acquire, process and interpret data; and to reach conclusions using her/his engineering skills.
3) Has the ability to select and efficiently use engineering design principles along with appropriate analytical, computational and experimental engineering techniques in order to optimize outputs related to various systems under realistic constraints.
4) Possesses the skills to select from among and efficiently use modern technologies, equipment, software and software languages in applications related to her/his respective field.
5) Possesses the ability to produce industry-focused solutions that are able to contribute to social health, safety and welfare, while being cognizant of global, cultural, societal, economical and environmental matters.
6) Has the awareness to take decisions ethically, professionally and without overlooking her/his legal responsibilities in situations related to her/his professions.
7) Has the awareness about contemporary issues such as sustainability, entrepreneurship and innovation; and the ability to comprehend the impacts of these notions on her/his profession.
8) Has the skills to communicate and make presentations to a level that will allow her/him to effectively make an exchange of information and experience both verbally and in written and with various communities related to her/his area.
9) Is able to use a foreign language at least at B1 level, measured in terms of the European Language Portfolio criterion.
10) In cognizance of life-long learning, possesses the ability to follow and adapt to changes that may arise in her/his field and reflect them into her/his profession.
11) Has the ability to work efficiently in interdisciplinary projects, be open to collaboration and take initiative when necessary, manage risks, plan activities and develop strategies.
12) She has the ability to follow new approaches in the field of human-machine interaction and artificial intelligence and apply them to problems in her field.

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Midterms 1 % 30
Final 1 % 70
total % 100
PERCENTAGE OF SEMESTER WORK % 30
PERCENTAGE OF FINAL WORK % 70
total % 100

Workload and ECTS Credit Calculation

Activities Number of Activities Workload
Course Hours 16 64
Study Hours Out of Class 16 48
Homework Assignments 1 4
Midterms 1 4
Final 1 5
Total Workload 125