Mechanical Engineering (English) | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code: | MATH210 | ||||
Course Name: | Probability and Statistics | ||||
Semester: | Spring | ||||
Course Credits: |
|
||||
Language of instruction: | English | ||||
Course Condition: | |||||
Does the Course Require Work Experience?: | No | ||||
Type of course: | Compulsory Courses | ||||
Course Level: |
|
||||
Mode of Delivery: | Face to face | ||||
Course Coordinator: | Prof. Dr. ŞÜKRÜ YALÇINKAYA | ||||
Course Lecturer(s): | Prof. ALIREZA AMIRTEIMOORI | ||||
Course Assistants: |
Course Objectives: | To teach the concepts and ideas about statistics and probability, to establish meaningful relationships between these concepts and ideas, to develop statistical thinking and reasoning skills. |
Course Content: | Sample space, probability, conditional probability, counting, combinatorics, discrete/continuous random variables, conditioning, independence, expectation, variance, covariance, Bayesian inference, sampling distributions, hypothesis testing, confidence intervals, and linear regression. |
The students who have succeeded in this course;
1) Understand and apply basic concepts of probability (sample spaces, counting, etc.), the mathematical descriptions of random variables and distribution functions. 2) Comprehends widely used random variables (such as Uniform, Gaussian, Poisson, etc.). 3) Compute the moments of random variables including the mean and variance. 4) Characterize multiple random variables using joint distribution functions. 5) Understand the law of large numbers and the central limit theorem. 6) Use statistical concepts and tools to interpret engineering data. |
Week | Subject | Related Preparation |
1) | Sample spaces and probability | |
2) | Bayes rule and independence | |
3) | Counting and combinatorics | |
4) | Discrete random variables | |
5) | Discrete random variables | |
6) | Discrete random variables | |
7) | Continuous random variables | |
8) | Midterm Exam | |
9) | Continuous random variables | |
10) | Continuous random variables | |
11) | Sampling distributions | |
12) | Confidence intervals | |
13) | Hypothesis testing | |
14) | Linear regression |
Course Notes / Textbooks: | Walpole, M. (2016). Probability and Statistics for Engineers and Scientists (9th/Global edition), Pearson Education. |
References: | Baron, M. (2014/2019). Probability and Statistics for Computer Scientists (2nd or 3rd edition), CRC Press / Taylor & Francis. Richard A. Johnson. Probability and Statistics for Engineers (Ninth/Global Edition), Pearson. |
Course Learning Outcomes | 1 |
2 |
3 |
4 |
5 |
6 |
|||||
---|---|---|---|---|---|---|---|---|---|---|---|
Program Outcomes | |||||||||||
1) Build up a body of knowledge in mathematics, science and Mechanical Engineering subjects; use theoretical and applied information in these areas to model and solve complex engineering problems. | 3 | 3 | 3 | 3 | 3 | 3 | |||||
2) Identify, formulate, and solve complex Mechanical Engineering problems; select and apply proper modeling and analysis methods for this purpose. | |||||||||||
3) Design complex Mechanical systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose. | |||||||||||
4) Devise, select, and use modern techniques and tools needed for solving complex problems in Mechanical Engineering practice; employ information technologies effectively. | |||||||||||
5) Design and conduct numerical or pysical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Mechanical Engineering. | |||||||||||
6) Cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Mechanical-related problems. | |||||||||||
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing. Write and understand reports, prepare design and production reports, deliver effective presentations, give and receive clear and understandable instructions. | |||||||||||
8) Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself. | |||||||||||
9) Develop an awareness of professional and ethical responsibility, and behave accordingly. Be informed about the standards used in Mechanical Engineering applications. | |||||||||||
10) Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development. | |||||||||||
11) Acquire knowledge about the effects of practices of Mechanical Engineering on health, environment, security in universal and social scope, and the contemporary problems of Mechatronics engineering; is aware of the legal consequences of Mechanical engineering solutions. |
No Effect | 1 Lowest | 2 Average | 3 Highest |
Program Outcomes | Level of Contribution | |
1) | Build up a body of knowledge in mathematics, science and Mechanical Engineering subjects; use theoretical and applied information in these areas to model and solve complex engineering problems. | 3 |
2) | Identify, formulate, and solve complex Mechanical Engineering problems; select and apply proper modeling and analysis methods for this purpose. | |
3) | Design complex Mechanical systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose. | |
4) | Devise, select, and use modern techniques and tools needed for solving complex problems in Mechanical Engineering practice; employ information technologies effectively. | |
5) | Design and conduct numerical or pysical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Mechanical Engineering. | |
6) | Cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Mechanical-related problems. | |
7) | Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing. Write and understand reports, prepare design and production reports, deliver effective presentations, give and receive clear and understandable instructions. | |
8) | Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself. | |
9) | Develop an awareness of professional and ethical responsibility, and behave accordingly. Be informed about the standards used in Mechanical Engineering applications. | |
10) | Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development. | |
11) | Acquire knowledge about the effects of practices of Mechanical Engineering on health, environment, security in universal and social scope, and the contemporary problems of Mechatronics engineering; is aware of the legal consequences of Mechanical engineering solutions. |
Semester Requirements | Number of Activities | Level of Contribution |
Midterms | 1 | % 40 |
Final | 1 | % 60 |
total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 40 | |
PERCENTAGE OF FINAL WORK | % 60 | |
total | % 100 |
Activities | Number of Activities | Preparation for the Activity | Spent for the Activity Itself | Completing the Activity Requirements | Workload | ||
Course Hours | 13 | 0 | 3 | 39 | |||
Application | 13 | 0 | 2 | 26 | |||
Study Hours Out of Class | 13 | 0 | 3 | 39 | |||
Midterms | 1 | 13 | 2 | 15 | |||
Final | 1 | 23 | 2 | 25 | |||
Total Workload | 144 |